Artillery of WinThatWar!

Original : Fisher Body craftmen

The animation of the vehicles is a perfect blend of handmade animation and procedural animation. I would like to begin with the latter type of animation, and here are the related elements:

> The movement of the vehicle is supported by the physical engine of the game. In this way, the vehicle follows the inclination of a virtual grid, a collision volume or, more simply, a deformed plan simulating the relief of the ground.

> The Artillery also needs to be able to shoot from different ranges and angles. Thus, the articulations related to the rotation of the cannon are animated by the code (what we call the “logic”) so that the shot adjusts itself directly to the position of the target, according to the position of the Artillery.

> The caterpillar tracks are also animated, following the movement of the vehicle. This effect is obtained by dynamically moving the UV coordinates of the model, in game, in accordance with the speed of the vehicle.

As a reminder, the UV coordinates are the correspondence between 3D coordinate (xyz) and 2D (uv) used to indicate where and how the textures are “drawn” on the model. In the case of the tracks, we could say that the UV “glide” on the 3D, giving an impression of rolling movement.

Artillery caterpillar continuous track

All the other animations are handled beforehand by the animator.

The animator is free to use all the other articulations available, except for the 2 articulations handled by the engine that we addressed earlier: the horizontal rotation of the turret and the vertical lifting of the cannon.

In the case of the Artillery, here are the elements created “by hand”, before the “logic” steps in:

> The animation of the installation. The vehicle is rather slow to get into siege position, and conveys the impression of a powerful weapon, which takes time to set up but is destructive. The disassembly is, however, much more short.

> Creation of shock absorption and a wave that shakes the whole vehicle when the Artillery shoots. This animation is achieved through the lifting of the mudguards, which is then synchronised with a shockwave effect, creating dust clouds.

animation joints and curves

And now, about shooting. This is when we add the particle effect which helps materialise the projectile, in the form of a plasma ball.

Finally, the death animation of the Artillery is simulated using the physical engine, called Mass FX. It is pre-calculated with the 3D modeling software and then reworked by the animator to get the desired result.

This animation goes with a smoke cloud and fragments spraying all around the vehicle. The destruction of the Artillery, alone, is not impressive enough to the player:

dislocation

This is pretty much the life of the Artillery. From the moment it leaves the factory to its death of the battle field.

This post about animation is the first half of a two-part article. The next post will be entirely dedicated to the Sound Design of the Artillery which, as you will see, is directly related to the different animations addressed here.